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Abstract

This paper deals with the derivation of equations suitable for the

computation of elastic curves on the sphere. To this end equations

for the main invariants of spherical elastic curves are given. A new
method for solving geometrically constraint differential equations is

used to compute the curves for given initial values. A classification of

the fundamental forms of the curves is presented.

1 Introduction

Two current trends in Geometric Modeling are concerned with

"* the development of spline techniques on surfaces (see [14], [12], [10])

"* the use of nonlinear spline curves of minimal elastic energy for the
modeling of smooth shapes (see [21, [3], [4]).

This paper blends both topics in considering elastic curves on the sphere.
In euclidean space an elastic curve can be viewed as an arc length para-

metrized "cubic" spline in tension, i.e. an elastic curve is a critical point of
the functional

'NY)= 1< >+a<y', y'> ds(1



in the space F of smooth maps

Y: [0, 1] - R", Iy'I = 1

y(O) = Po, y() = P1, y'(0) = Vo, y'(1) = Vi

where Po, P1 E R1, Vo E TpR'•, V1 E Tp1R', a E R are fixed and I is
variable. Expressing y" in the Frenet frame yields the functional (D in the
form

) q + (2)

which explains the interest in elastic curves as those curves that minimize
-bending.

The notion of cubic splines can be generalized to curves on a Riemannian
manifold M by replacing the usual derivative of the tangent vector field
y' by the covariant derivative compatible with the metric of M (see [13]).
Generalizing the functional (1) in this way, one obtains the concept of elastic
curves on arbitrary manifolds. In the case of surfaces embedded in R' the
algebraic value of the covariant derivative of the tangent vector field y' of a
surface curve y is called the geodesic curvature ic of y (see [5] and section
2). Therefore we may define an elastic curve on a surface S : A C R 2 --* R'
as an extremal point of the functional

C = 10 K(S))2 + a ds, (3)

in the subset F of F formed by curves lying on S.
In section 3 a set of differential equations for elastic curves on the sphere is

derived. This set includes a differential equation for the geodesic curvature of
spherical elastica. Since the normal curvature of a spherical curve is constant.,
the differential equation for the geodesic curvature suffices to compute the
ordinary curvature of a spherical elastica. Furthermore, a formula is given
that expresses the squared torsion of a spherical elastica as a rational function
of its curvature.

In section 4 we describe the numerical algorithm used to integrate the
set of differential equations derived in section 3. The equations have a very
particular structure defined by a number of constants of motion, and in
particular they constrain the elastic curves to lie on the sphere. We employ
an algorithm introduced by Crouch and Grossman [8] which preserves the
constraints exactly.

Since Euler's fundamental work on plane elastic curves it is known that
these curves can be classified according to their shape. The tools developed
in this paper enable us to present the fundamental forms of spherical elastica
in the last section.
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2 Geometric Preliminaries

Let S : U C R 2 -- R' denote a regular parametric surface and N the unit
normal vector field of S. A curve x : I C R --- R' is a curve on the surface
S if and only if x = S o c where c : I ---+ U is a plane curve in U. The unit
normal of S along a surface curve x will be denoted by n := N o c.

The Darboux frame bi, b2, b3 along x is the orthogonal frame defined by

bi(t) = ' b2(t) = n(t) x b1(t), b3(t) = n(t).

The equations that express the derivatives b', b', b3 in the Darboux basis
bl, b2, b3 are given by:

1= ' 9 b2 + wCnb3 , (4)
= -wLKbl + rb 3 , (5)

3= -wtnbl - wrgb2  (6)

with w(t) = Ix'(t)J.
The functions xg, X, and r7 are called geodesic curvature, normal cur-

vature and geodesic torsion. The geodesic torsion and the absolute value of

geodesic and normal curvature are invariant under reparametrization of the
surface.

The geodesic curvature of a surface curve x at a point x(t) is the ordinary
curvature of the plane curve generated by orthogonal projection of x onto
the tangent plane of S at x(t). It can be computed using the formula

[x', x", n] (7),cg = izi

A surface curve with identically vanishing geodesic curvature is called a
geodesic of the surface.

The absolute value of the normal curvature of x at a point x(t) is the
curvature of the intersection of S with the plane through x(t) spanned by
the vectors x'(t) and n(t). While the geodesic curvature is the curvature of a
surface curve from a viewpoint in the surface, normal curvature measures the
curvature of the curve that is due to the curvature of the underlying surface.
If r denotes the ordinary curvature of the space curve x the identity

K2  2 +1 2  
(8)n 9

holds.
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The geodesic torsion of a surface curve x at a point x(t) is the torsion
of the geodesic that meets x at x(t) with common tangent direction. A
curvature line of x, i.e. a curve with a tangent vector that points into one of
the principal directions of the surface, is characterized by vanishing geodesic
torsion.

3 The differential equations of spherical elas-
tica

Let S be a parametrization of a patch on a sphere S2 C R' of radius r and
center 0 such that

S = rN

and x be an arc length parametrized (i.e. Ix'I = 1) curve on S. Then

X= n' = rb'.

In this situation (6) implies that

1
Kn = -- , r, = 0. (9)

r

Since the absolute value of tC, and r7 are invariant under reparametrization,
these equations imply that any spherical curve is a curvature line with con-
stant normal curvature.

We consider the variational problem of minimizing

"( (s))2 + o ds

in the space P of Cc* smooth maps

y: [0, l]- `S2, 10 = 1

y(0) = Po, y(1) = P1, y'(0) = Vo, y'(1) = Vi

where P0 , P1 E S2, Vo E TpoS 2 , Vi E Tp1S2 , oa E R are fixed and 1 is
variable.

From (4) one obtains the relation

21

so that we wish to minimize the functional

b' Ib(S)12 + Sds

4



where 1

r2

under the constraints

1b = 1, b, = x', I1 2 = r 2 .

Hence, we can apply the Euler-Lagrange equations to the functional

F = 1b' 12 + 6 + A(1b 12 - 1) + P,(IX12 - r2) + 2 < A,x' - b, >

to obtain the differential equations which govern the extremals:

pu -A'= 0 (10)

Ab - bV'= A. (11)

Combining these equations yields

A'bj + Ab' - b"' = px. (12)

The derivatives of b, expressed in the Darboux basis are given by:

bf = K b 2 - lb 3  (13)

,= b2 -, ( l2 )b (14)b1 = 2g, ( 72 •

bi' (-3xqtc;)bj + (r." - -. 7 qb

+ 1 K2 +1 )b-(15)
r 9 r2)a

Substituting these derivatives and x = rb3 into (12) and rearranging gives

(A' + 3U91';)b1
It + lr3b

+ (Axg--K+. +7

A + pr + ( 2 + ))b = 01

Finally, the linear independence of the vectors bl, b2 and b3 implies that

3
A 3-K2 +c C(16)

and
K t+ 3 ,_ ,-'+ -0 (17)2 9 T-+i2g9
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In order to determine the constant C in terms of the tension parameter
a, we consider the boundary condition

F(1) - ()x() - ()b()= 0
(9Iý7,1 4

for the extremal x. This condition is implied by the fact that the total length
I of the curve is variable in the variation (see, e.g., [1]). Thus,

(18

r2 + 8 2 < A(l), >= 0.

Substituting A according to (11) into the scalar product < A. z' > yields

< A (1), x'(1) > = < A bi (1), bi(1) > - < b" (1), bi(1) >

= + (tC2(1))2 + r-1
1 21

_(Kg(/))2 + 1' + C

Substituting this expression for the scalar product into (18) we obtain
1 1_ 1)

C +(:9)
r2  2( r2P

These results are summarized in the following theorem.

Theorem 1 An elastic curve x under tension a on the sphere of radius r
satifies the differential equations

2'- 1/r 0 Kg X (20)

-'C 0 X3

where x, = x, X 2 = rx', x3 = x x x' and where the geodesic curvature xg of
x is a solution of

9 9 r•r 3 + ( )IC9 = 0. (21)

The curvature of a spherical elastic curve can be obtained from (8) and the
fact that the normal curvature of spherical curves is constant. The squared
torsion of a spherical elastica can be expressed as a rational function of its
curvature.

Theorem 2 The curvature tc and the torsion r of a spherical elastic curve
obey the relation:

r 2T 2' 4 
K= 1K4 1 1 12+ 3- +C1.
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Proof: For the invariants K and r of an arc length parametrized curve x in
R3 the relation

7T0 = [b1, Ib'j, b•' (22)

holds where [a,b,c] denotes the determinant of three vectors in R3 .
For a spherical curve b' and b"' can be expressed in the Darboux basis as

follows:

b= Kb 2 -b 3
r

2b= -('i + K )bi + K•b2.

Substituting the derivatives into (22) and squaring yields

2 4 -(' 2

Since the differential equation (21) can be integrated to
(K;) 2 =C1 I4 _ - - 1 )K 2

9 4 g~ r2 2 '

one obtains tile claimed equation using (8).

4 Tracking elastic curves on the sphere

The problem we consider here is that of numerically integrating equations
(20) and (21) in Theorem 1. One can of course simply integrate the equa-
tions using a standard numerical package, such as an IMSL Runge Kutta
routine. However, the system of equations possesses a very special structure.
As pointed out in [31, equation (21) may be integrated directly in terms of
Jacobi's elliptic functions. We give more details of this process in the next
section where we classify the various extremals. As for equation (20) we
note that the components of the state vector [XT, XT, XT]T satisfy algebraic
constraints consistent with the fact that the matrix [x,,x 2, X3] is simply a
multiple r, of a rotation matrix. When a standard integration package is
applied to the set of differential equations (20) and (21), these constraints
are not preserved exactly, and in particular the norm of the vector x] will
not remain at the constant value r. This is a particularly important fact
when we wish to integrate the equations over a large number of time steps
and visualize the resulting curves.

We have therefore made use of a new class of integration algorithms de-
veloped by Crouch and Grossman [8], and Crouch, Yan and Grossman [7]
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which do indeed preserve such structures. The algorithms are therefore called
geometrically exact [6]. We briefly indicate the important aspects of these
geometrically stable algorithms which pertain to the equations (20) and (21).
Suppose that we wish to numerically integrate an ordinary differential equa-
tion on R" given by the equations:

i(t) = F(t, x()), xE R', x(0) = (23)

where
N

F(t,x) = Z•a1(t,x)Aj(x) (24)
j=1

n > N, Aj are vector fields on R" and aj are functions on R x R'. Suppose
that in addition we are given a set of functions on R' whose numerical values
are constant along solutions of the equation (23) and that the level sets of
thesc functions are manifolds. Denote the level set through x0 by A1. It is
convenient to assume the slightly stronger assumption that the vector fields
A, are everywhere tangent to .1. We also assume that there is an oracle that
can integrate any vector field of the following form, to any desired accuracy:

N

Z(x) = Z AJm,(x). (25)
j=l

Here aj are real numbers. We define vector fields FP by setting:

N

FI(x) = Z a(p)A, (x)
j=1

and note that FP is simply the vector field F with coefficients "frozen" at
the point p. If we denote the flow of any vector field Z by (t, x) -- Oz(t, x),
R x R' --+ R'", then since the vector fields Aj are everywhere tangent to Al,
it follows that x E Al implies that OFP(t,x) E M for all p and for all t for
which the flow is defined.

We now introduce the (explicit) geometrically exact Runge Kutta algo-
rithms as described in [8]. Let Xk = X(tk) be a point of the integral curve
x of (23). Then, define vector fields on R n by freezing coefficients of F at
various points as follows:

N

FI(x) = Zaj(tk,xk)Aj(x)
j=l

N

F2(x) = E aj(tk + hc 2 I,OF1,(hc 21,xk))Aj(x)
j=1
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N

Fa(x) = ZaJ(tk + h(c 3i + c32),OF2(hc 32,OF,(hc 31,p)))Aj(x),
j=1

etc. Second. we define the numerical integration algorithm via an update
rule:

xk+i = OFr,(hc,,OF,_,(hc,_,, 'OF,(hci,Xk))) (26)

where h is the "step length" and ci and ci, are constants to be determined.
These constants are determined from the "consistency equations," obtained
by making the Taylor expansions in h, about h = 0, of both sides of (26),
using on the left hand side the expression Xk++ = OF(h, xk). If the coefficients
of h' agree up to i = q, then q is said to be order of the resulting algorithm.
Note that in general we have r > q, while for classical Runge Kutta schemes
we can always take r = q. Note that the update rule defined by equation
(26) has the property that if xk lies in M, then so does Xk+1 since each flow is
defined by a vector field F with frozen coefficients. In the special case where
7 = N, Al = R' and Ai = (, is the standard ith basis vector in Rn, the
algorithm reduces to the form of a classical explicit Runge-Kutta algorithm.

In the paper [8] the consistency equations are derived for the geometri-
cally exact Runge Kutta algorithms via a careful geometric analysis of the
equations (26). The results show that a geometrically exact third order ex-
plicit Runge Kutta algorithm can be obtained for r = 3 and is determined
by five independent consistency equations, in the six constants defining tile
algorithm. The equations have multiple solutions, all of which are solutions
to the equations which determine the classical explicit Runge Kutta algo-
rithms. Thus, all solutions define classical algorithms, but the solutions are
not ones traditionally found in the literature. We have used the following
solution of all five equations:

c1 = 1, c2 =-2/3, c3 =2/3,

c21 = -1/24, c31 = 161/24, c32 = -6.

In the special case of the set of equations (20) and (21), defining the
elastica on a sphere, we use a hybrid algorithm in which equations (20) are
integrated using the third order geometrically exact Runge Kutta algorithm
described above by freezing the coefficients re9 . These coefficients are then
updated by integrating equation (21) using elliptic functions.

In equation (20), M is the three dimensional submanifold of R9 deter-
mined by the equations

2
< xIx >= r, < Xl,X2 >= 0, < X1, X3 >= 0,

< X2, X2 >-"1 < X2, X3 >=- 0, < X3, X3 >=- 1



The solutions of (20) for any initial condition x(0) = xo E Al lie completely
in M. This follows from the fact that the functions

f 1 =< x1 ,xl >, f 2 =< XI.x 2 >, f 3 =< xl.x'3 >.

f4 =< x 2, x 2 >, fs =< x2 , x3 >, f =< X3 , X3 >

satisfy the system of differential equations

f = 2f.2

f2' = f 4 + Kgf 3 - (1/r 2 )fi

f3= f5 -, 9 f2

f4 = 2Kg'f• - (2/7-')f2

fg = Kgf' - (1/r 2 )f3- -9f4

f6- = -2K9 f5

which has the unique solution

f. = r 2, f2 = 0, f3 = 0, f4 = 1, f. = 0, f6 = 1.

Since this argument does not specify the function Kg, it follows that the flows
of the vector fields F, - F3 with frozen coefficients are mappings into M as
needed in formula (26).

Furthermore, the vector fields A. in equation (20) are linear, so that F is
given by an expression of the form

N

F(x) = Zýb-(t,x)Bjx (27)
j=1

where Bj are matrices and b' are functions. Freezing the functions b' to values
/3j yields a system of linear differential equations with constant coefficients:

N

Oj~ X (28)

Thus, the flow OF, of the vector field Fj (i=1,2,3) is given by

OF,(t, q) = exp(tCj) q

and (26) takes the special form

Xk+I = exp(c 3hC 3) . exp(c2hC 2) exp(cihC,) -. Xk

10



Since b' = 1/v is constant and b2 
= K. depends only on t, the matrices Ci

are given by

Ci = C(tk), C2 = C(tk + hc21), C3 = C(tk + h(c 31 + c32))

where C(t) _= b'(t)Bj. C can be considered as a 3 x 3 skew symmetric
matrix with matrix components that are themselves 3 x 3 matrices. Therefore

the standard formula for the exponential of a 3 x 3 skew symmetric matrix
can be used to compute the flow of each vector field:

exp(tOS(c)) = I + sin(to).5(c) + (1 - cos(IO))S(c) 2

where S(c) is tile skew symmetric matrix satisfying S(a)b = bx a. and Icl = 1.
Regarding the performance of the geometrically stable integration method

it is clear that this method is comput tionally more expensive than a classical

algorithm with the same number of stages and step length. The exact cost
of the new integration scheme can be found in [6]. however, if we compare
the performance of the geometrically stable method with the classical fourth

order Runge-Kutta algorithm on the problem of spherical elastica, it turns
out that a slightly increased step length for the new method suffices to out-
perform the classical integration method. Using MATLAB implementations
of both algorithms we found that the geometrically stable method needs an

average value of 1001 Mflops for one cont plete step while the fourth order

Runge-Kutta only uses an average valu. of 768 Mflops per step. Therefore,
one can statistically achieve the same performance by using an increased step
length of h - 1.3038 hRK for the new method. Taking into account that tile
proposed algorithm not only delivers points that lie exactely on the sphere
but that are also approximately equally spaced along the tracked curve, the
geometrically stable method seems to be a good choice for tile integration of

spherical elastica.
A performance comparison of the new integration scheme with a more

sophisticated classical method, the IMSL Runge Kutta implementation, can
be found in [7].

5 Classification of spherical elastica

Acting on the suggestion of D. Bernoulli, L. Euler derived differential equa-
tions for plane elastica and classified the fundamental forms of these curves
(see [9], [11]). A curvature analysis of the various fundamental cases has been
given in [3].

In this section we classify the forms of spherical elastica based on the
differential equation (21) for the geodesic curvature. This equation is of the
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same form as the equation for the curvature of plane elastica and can be
solved in terms of Jacobi's elliptic functions in the form:

h9 (s) = K,, dn(K,,..(s - s,,)/2 112)

where the positive parameter 12 of the elliptic function is given by

12 = (K,, + )- (29)
K 

2

(see [3]). The parameter KM represents the amplitude of the periodic curva-
ture function and sm denotes the value at which K(s,,) = K,,,.

To obtain a representation of the curvature in terms of Jacobi's functions
with parameter 12 smaller than 1, one uses the formula

K9 (s) = , cn( (g + 2/i.2 - oj/2(s - s,,,) I T) (30)

if a < 0.5tc,,, + 2/r 2 . Since the function cn has zeros while dn is positive, the
above case distinction reflects the main division of elastic curves into those
where the geodesic curvature changes sign and the other with constant sign
of their geodesic curvature.

The change of the forms of spherical elastica while Km is fixed and a in-
creases is shown by figures 1-8. The maximum value of the tension parameter
a for a real elastic curve on a sphere is according to (29) a = K',, + 2/1,2.
This choice of a corresponds to the dashed circle that is shown in all figures
for the purpose of orientation. The second curve in figure 1 has a negative
tension parameter of high absolute value (a = -10000). In comparison to
figure 2 where a = -30 we observe that decreasing the tension parameter
has the effect of lowering the amplitude of the curve as it is known from
the euclidean case (see [3]). The oscillation of the curve in figure 1 is of
too low amplitude to be visually observed and the curve can not be distin-
guished from the geodesic determined by the initial conditions. (Note, that
the geodesic curvature (30) is far from getting flat for a --+ -co but in fact
approaches a cos function that oscillates with a period that decreases with
a.)

A curve with positive tension parameter is shown in figure 3 where a =

2/r 2 = 2. The displayed curve is a special case because the parameter
1/1' - 1/2. Here the geodesic curvature is given by the lemniscate function:

Kg(s) = K, coslemn(tzm(s - s,,)12).

In figures 4 and 5 it is illustrated that with increasing positive a the
bays of the curves start to overlap until a figure-8-configuration is reached

12
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Figure 1: ., = 4, a = -10000

where all double points of the curve coincide. This happens for a parameter
a - 7.849.

While a increases further the curve proceeds through the figure-8-shape
forming a series of loops with alternating sign of geodesic curvature (see
figure 6). These loops recede from each other until in the limiting case, when
a = 2/r 2 + 0.5 , the curve forms a single loop (see figure 7). Here the
geodesic curvature is given by

I%(s) = K,,,sech(tc,(s - s.)12).

Figure 8 shows that the single loop transforms into a series of loops with
the same sign of geodesic curvature. With increasing a the loops come closer
together and finally collapse into a circle when a = 2/r"2 + K,,.
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